3.2530 \(\int \frac{d+e x}{\sqrt [4]{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=469 \[ \frac{\left (b^2-4 a c\right )^{3/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right ),\frac{1}{2}\right )}{2 \sqrt{2} c^{7/4} (b+2 c x)}+\frac{(b+2 c x) \sqrt [4]{a+b x+c x^2} (2 c d-b e)}{c^{3/2} \sqrt{b^2-4 a c} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )}-\frac{\left (b^2-4 a c\right )^{3/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) E\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{\sqrt{2} c^{7/4} (b+2 c x)}+\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c} \]

[Out]

(2*e*(a + b*x + c*x^2)^(3/4))/(3*c) + ((2*c*d - b*e)*(b + 2*c*x)*(a + b*x + c*x^2)^(1/4))/(c^(3/2)*Sqrt[b^2 -
4*a*c]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])) - ((b^2 - 4*a*c)^(3/4)*(2*c*d - b*e)*Sqrt[(b
 + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[
a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticE[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/(b^2 - 4*a*c
)^(1/4)], 1/2])/(Sqrt[2]*c^(7/4)*(b + 2*c*x)) + ((b^2 - 4*a*c)^(3/4)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/((b^2 -
4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sq
rt[b^2 - 4*a*c])*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(2*S
qrt[2]*c^(7/4)*(b + 2*c*x))

________________________________________________________________________________________

Rubi [A]  time = 0.381251, antiderivative size = 469, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {640, 623, 305, 220, 1196} \[ \frac{(b+2 c x) \sqrt [4]{a+b x+c x^2} (2 c d-b e)}{c^{3/2} \sqrt{b^2-4 a c} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )}+\frac{\left (b^2-4 a c\right )^{3/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) F\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{2 \sqrt{2} c^{7/4} (b+2 c x)}-\frac{\left (b^2-4 a c\right )^{3/4} \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right )^2}} \left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}+1\right ) (2 c d-b e) E\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{\sqrt{2} c^{7/4} (b+2 c x)}+\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + b*x + c*x^2)^(1/4),x]

[Out]

(2*e*(a + b*x + c*x^2)^(3/4))/(3*c) + ((2*c*d - b*e)*(b + 2*c*x)*(a + b*x + c*x^2)^(1/4))/(c^(3/2)*Sqrt[b^2 -
4*a*c]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])) - ((b^2 - 4*a*c)^(3/4)*(2*c*d - b*e)*Sqrt[(b
 + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[
a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticE[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/(b^2 - 4*a*c
)^(1/4)], 1/2])/(Sqrt[2]*c^(7/4)*(b + 2*c*x)) + ((b^2 - 4*a*c)^(3/4)*(2*c*d - b*e)*Sqrt[(b + 2*c*x)^2/((b^2 -
4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sq
rt[b^2 - 4*a*c])*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(2*S
qrt[2]*c^(7/4)*(b + 2*c*x))

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 623

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{d = Denominator[p]}, Dist[(d*Sqrt[(b + 2*c*x)
^2])/(b + 2*c*x), Subst[Int[x^(d*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^d], x], x, (a + b*x + c*x^2)^(1/d)], x]
 /; 3 <= d <= 4] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && RationalQ[p]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{d+e x}{\sqrt [4]{a+b x+c x^2}} \, dx &=\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c}+\frac{(2 c d-b e) \int \frac{1}{\sqrt [4]{a+b x+c x^2}} \, dx}{2 c}\\ &=\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c}+\frac{\left (2 (2 c d-b e) \sqrt{(b+2 c x)^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{c (b+2 c x)}\\ &=\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c}+\frac{\left (\sqrt{b^2-4 a c} (2 c d-b e) \sqrt{(b+2 c x)^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{c^{3/2} (b+2 c x)}-\frac{\left (\sqrt{b^2-4 a c} (2 c d-b e) \sqrt{(b+2 c x)^2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{2 \sqrt{c} x^2}{\sqrt{b^2-4 a c}}}{\sqrt{b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{c^{3/2} (b+2 c x)}\\ &=\frac{2 e \left (a+b x+c x^2\right )^{3/4}}{3 c}+\frac{(2 c d-b e) (b+2 c x) \sqrt [4]{a+b x+c x^2}}{c^{3/2} \sqrt{b^2-4 a c} \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )}-\frac{\left (b^2-4 a c\right )^{3/4} (2 c d-b e) \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )^2}} \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right ) E\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{\sqrt{2} c^{7/4} (b+2 c x)}+\frac{\left (b^2-4 a c\right )^{3/4} (2 c d-b e) \sqrt{\frac{(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )^2}} \left (1+\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac{1}{2}\right )}{2 \sqrt{2} c^{7/4} (b+2 c x)}\\ \end{align*}

Mathematica [C]  time = 0.122807, size = 112, normalized size = 0.24 \[ \frac{3 \sqrt{2} (b+2 c x) \sqrt [4]{\frac{c (a+x (b+c x))}{4 a c-b^2}} (2 c d-b e) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{3}{2};\frac{(b+2 c x)^2}{b^2-4 a c}\right )+8 c e (a+x (b+c x))}{12 c^2 \sqrt [4]{a+x (b+c x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + b*x + c*x^2)^(1/4),x]

[Out]

(8*c*e*(a + x*(b + c*x)) + 3*Sqrt[2]*(2*c*d - b*e)*(b + 2*c*x)*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(1/4)*Hy
pergeometric2F1[1/4, 1/2, 3/2, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(12*c^2*(a + x*(b + c*x))^(1/4))

________________________________________________________________________________________

Maple [F]  time = 1.037, size = 0, normalized size = 0. \begin{align*} \int{(ex+d){\frac{1}{\sqrt [4]{c{x}^{2}+bx+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*x^2+b*x+a)^(1/4),x)

[Out]

int((e*x+d)/(c*x^2+b*x+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x + d}{{\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/4),x, algorithm="maxima")

[Out]

integrate((e*x + d)/(c*x^2 + b*x + a)^(1/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e x + d}{{\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/4),x, algorithm="fricas")

[Out]

integral((e*x + d)/(c*x^2 + b*x + a)^(1/4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x}{\sqrt [4]{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x**2+b*x+a)**(1/4),x)

[Out]

Integral((d + e*x)/(a + b*x + c*x**2)**(1/4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x + d}{{\left (c x^{2} + b x + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/4),x, algorithm="giac")

[Out]

integrate((e*x + d)/(c*x^2 + b*x + a)^(1/4), x)